Plastic Lunch

At my school, many people buy lunch from the school cafeteria. Many of the lunches are sold in plastic containers. These containers are made from #5 plastic, and their lids are made of #6 plastic. These plastics are not recyclable in Honolulu. This means that much plastic is thrown away at my school every day. Only #1 and #2 plastics are recyclable in the County of Honolulu. However, #5 plastic, or polypropylene, and #6 plastic, or polystyrene, are neither recyclable in Honolulu nor in very many other places. Polystyrene alone is estimated to make up 35% of landfills in the United States. Only an estimated 3% of polypropylene is recycled in the United States. (Seaman)

All plastics, but especially polystyrene, which is structurally weak and not durable, eventually break up into small pieces. These tiny fragments of plastic are called microplastics, and they cause numerous problems for those creatures who live in or near the ocean. Microplastics are dangerous to ocean animals because animals can easily ingest them into their bodies. There they accumulate, as they release toxins into the animals’ bodies and clog their digestive systems, which eventually kills them. Microplastics accumulate more as they move higher on the food chain, as animals eat smaller animals which have eaten plastic. Even we humans can have plastic inside of us. In addition, plastics compressed in landfills will catch fire under pressure, producing methane, a greenhouse gas. Methane contributes to global warming.

If we do not stop using plastic soon, plastic pollution will only become a bigger problem. By the time fifty years have passed, there will be much more plastic in landfills and in the oceans. This will put more methane in the atmosphere, making more and faster global warming. More microplastics will be floating through our oceans, harming more animals.
Plastics which can be recycled here are certainly better than those which cannot, but a better solution would be to find a way to use no plastic. My school also uses paper containers. Because they have come in contact with food, they cannot be recycled, but some paper containers are able to be composted. Although paper plates and food containers are usually coated with non compostable plastic, there are some, such as food containers using plant based plastics which can be composted. Compost bins could be created at schools or other places where there is a lot of food waste. I think that this would be a relatively easy thing to.

Besides being a good way to reduce the amount of waste sent to landfills, the compost could also be used to fertilize a garden of plants and trees. I think that planting gardens at schools would be a good idea for multiple reasons. Firstly, plants play an important role in the environment. They convert carbon dioxide from the air into oxygen through the process of photosynthesis, removing the carbon dioxide from the atmosphere and helping to alleviate global warming. The more trees and other plants are growing on Earth, the less carbon dioxide we will have in our atmosphere. Growing edible plants, such as herbs and vegetables, could contribute to making some of the lunches. If these plants were grown near the place where the lunches are prepared, it would reduce packaging and the carbon footprint of its transportation. Herbs would be especially good for this purpose because there are many leaves, and the leaves can easily grow back. A relatively small amount of herbs would be needed for each dish. However, since the edible part of herbs, their leaves, is the part that carries out photosynthesis, it would make sense to also grow other plants such as fruits and vegetables. These would take longer to grow, and not be eaten as often, but they would also remove more carbon dioxide. Having a garden at a
school could also be an opportunity for students to learn more about the environment and do something to help their planet.
Works Cited:

“Frequently Asked Questions: Contamination.” *Frequently Asked Questions: Contamination* | *Land, Buildings & Real Estate*, Stanford University,

Seaman, Greg. “Plastics by the Numbers.” *Eartheasy Guides & Articles*, 2 May 2012,